martes, 7 de junio de 2016

DILATACIONES DE LOSCUERPOS



Dilatación lineal


Es el cambio total de longitud de la dimensión lineal que se considere, expresarse como:

Donde:

α=coeficiente de dilatación lineal [1/C°]
L0= Longitud inicial del cuerpo.
Lf= Longitud final del cuerpo.
T0= Temperatura inicial del cuerpo.
Tf= Temperatura final

COEFICIENTES DE DILATACION

PROBLEMA RESUELTO

 1.- Los rieles de una vía de tren de acero, tienen 1500 m de longitud . ¿Qué longitud tendrá cuando la temperatura aumente de 24°C a 45°C?
Solución: El problema es muy sencillo, por lo cual no requiere mucho análisis, sin embargo vamos a tocar ese punto antes de comenzar a resolverlo.
Si bien se sabe, los rieles en las vías del ferrocarril, normalmente se le coloca un espacio entre ellas a cierta distancia para cuando éste material se dilate a ciertas horas del día.
Ahora anotemos nuestros datos:
Datos:
\displaystyle {{L}_{o}}=1500m –> Longitud Inicial
\displaystyle {{L}_{f}}=\text{?} –> Longitud Final  –> La vamos a encontrar
\displaystyle {{t}_{o}}=24{}^\circ C –> Temperatura Inicial
\displaystyle {{t}_{f}}=45{}^\circ C –> Temperatura Final
\displaystyle \alpha =11x{{10}^{-6}}{}^\circ {{C}^{-1}}  –> Coeficiente de dilatación lineal del Acero.
Hemos elegido acero, porque el problema nos pide que son vías del ferrocarril de acero.
Lo único que haremos será sustituir nuestros datos, en la fórmula final.
\displaystyle {{L}_{f}}={{L}_{o}}(1+\alpha \Delta t)
Pero antes de sustituir, debemos saber cual es el valor de la diferencial de temperatura, para poder meterla en la fórmula, esa diferencial es la resta de la temperatura más alta, con la temperatura más baja.
\displaystyle \Delta t=45{}^\circ C-24{}^\circ C=21{}^\circ C
Ahora si, a sustituir en la fórmula.
\displaystyle {{L}_{f}}=1500m(1+21{}^\circ C\cdot 11x{{10}^{-6}}{}^\circ {{C}^{-1}})
\displaystyle {{L}_{f}}=1500m(1+2.31x{{10}^{-4}})
\displaystyle {{L}_{f}}=1500m(1.000231)
\displaystyle {{L}_{f}}=1500.3465m

DILATACIÓN SUPERFICIAL


Es aquella en que predomina la variación en dos dimensiones, o sea, la variación del área del cuerpo
Para estudiar este tipo de dilatación, podemos imaginar una placa metálica de área inicial S0 y temperatura inicial θ0. Si la calentáramos hasta la temperatura final θ, su área pasará a tener un valor final igual a S.
La dilatación superficial ocurre de forma análoga a la de la dilatación lineal; por tanto podemos obtener las siguientes ecuaciones:


PROBLEMA RESUELTO
http://youtu.be/ceSqKVFLh14

DILATACIÓN VOLUMETRICA


Un sólido isótropo tiene un coeficiente de dilatación volumétrico que es aproximadamente tres veces el coeficiente de dilatación lineal. Por ejem si se considera un pequeño prisma rectangular (de dimensiones:LxLy y Lz), y se somete a un incremento uniforme de temperatura, el cambio de volumen vendrá dado por:



  
PROBLEMA RESUELTO

El volumen inicial del mercurio es de 30 cm3, pero este sufre un cambio de temperatura de 10° a los 60°.
¿Cuál será su volumen final?
ΔV=ᵧVoΔT       
ΔV=0.18*10-3(30 cm3)(60°-10°)
ΔV=0.27cm3
Nota; los valore de β, ᵧ, ᾳ, fueron tomado de las siguientes tablas, las cuales representan los coeficientes  de dilatación en sus distintas formas.
sustancia               ᾳ(1/°c)
Aluminio                        23*10-6
Cobre                            17*10-6
Zinc                               26*10-6
Vidrio común                 9*10-6
Vidrio pírex                   3.2*10-6
Plomo                           29*10-6
Sílice                             0.4*10-6
Acero                           11*10-6
Diamante                      0.9*10-6

Mecanismos de transferencia de calor

CONDUCCIÓN


 conducción es el mecanismo de transferencia de calor en escala atómica a través de la materia por actividad molecular, por el choque de unas moléculas con otras, donde las partículas más energéticas le entregan energía a las menos energéticas, produciéndose un flujo de calor desde las temperaturas más altas a las más bajas. Los mejores conductores de calor son los metales. El aire es un mal conductor del calor. Los objetos malos conductores como el aire o plásticos se llaman aislantes.
Monografias.com
Donde k (en Watt/m. K) se llama conductividad térmica del material, magnitud que representa la capacidad con la cual la sustancia conduce calor y produce la consiguiente variación de temperatura; y dT/dx es el gradiente de temperatura. El signo menos indica que la conducción de calor es en la dirección decreciente de la temperatura.
Monografias.com
Figura 2.
  • B. CONVECCIÓN
La convección es el mecanismo de transferencia de calor por movimiento de masa o circulación dentro de la sustancia. Puede ser natural producida solo por las diferencias de densidades de la materia; o forzada, cuando la materia es obligada a moverse de un lugar a otro, por ejemplo el aire con un ventilador o el agua con una bomba. Sólo se produce en líquidos y gases donde los átomos y moléculas son libres de moverse en el medio.
En la naturaleza, la mayor parte del calor ganado por la atmósfera por conducción y radiación cerca de la superficie, es transportado a otras capas o niveles de la atmósfera por convección.
Un modelo de transferencia de calor H por convección, llamado ley de enfriamiento de Newton, es el siguiente:
Monografias.com (7)
Donde h se llama coeficiente de convección, en Watt/ (m2. K), A es la superficie que entrega calor con una temperatura TA al fluido adyacente, que se encuentra a una temperatura T, como se muestra en el esquema de la figura 3.
Monografias.com
Figura 3.
El flujo de calor por convención es positivo (H > 0) si el calor se transfiere desde la superficie de área A al fluido (TA > T) y negativo si el calor se transfiere desde el fluido hacia la superficie (TA < T).
  • C. RADIACIÓN
La radiación térmica es energía emitida por la materia que se encuentra a una temperatura dada, se produce directamente desde la fuente hacia afuera en todas las direcciones. Esta energía es producida por los cambios en las configuraciones electrónicas de los átomos o moléculas constitutivos y transportada por ondas electromagnéticas o fotones, por lo recibe el nombre de radiación electromagnética. La masa en reposo de un fotón (que significa luz) es idénticamente nula. Por lo tanto, atendiendo a relatividad especial, un fotón viaja a la velocidad de la luz y no se puede mantener en reposo. (La trayectoria descrita por un fotón se llama rayo). La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes y perpendiculares entre sí, que se propagan a través del espacio transportando energía de un lugar a otro.
A diferencia de la conducción y la convención, o de otros tipos de onda, como el sonido, que necesitan un medio material para propagarse, la radiación electromagnética es independiente de la materia para su propagación, de hecho, la transferencia de energía por radiación es más efectiva en el vacío. Sin embargo, la velocidad, intensidad y dirección de su flujo de energía se ven influidos por la presencia de materia. Así, estas ondas pueden atravesar el espacio interplanetario e interestelar y llegar a la Tierra desde el Sol y las estrellas. La longitud de onda (?) y la frecuencia (?) de las ondas electromagnéticas, relacionadas mediante la expresión  son importantes para determinar su energía, su visibilidad, su poder de penetración y otras características. Independientemente de su frecuencia y longitud de onda, todas las ondas electromagnéticas se desplazan en el vacío con una rapidez constante c = 299792 km/s, llamada velocidad de la luz.

No hay comentarios.:

Publicar un comentario